
Richard’s C Programming
Course
Lecture 2: Memory, arrays and pointers

Tips welcome in XRP:
richard43NZXStHcjJi2UB8LGDQGFLKNs

Variable scope

� Variables defined inside functions

can’t be used by other functions
int main() {

int x = 2;

/* can only use x here */

}

� Variables defined outside functions

can be used by any function
int x = 2;

/* x can be used in any function */

int main() {

}

Arrays

� Recall that arrays are a sequence of
variables next to each other in memory.

� We can define an array of 10 integers like
this:
 int x[10];

� What is the variable type of x in this case?
1. Is it an int?

2. Is it an array?

3. Something else?

Arrays continued

� It’s actually an integer pointer. int*

� Pointers are variables that point to memory locations

� We can follow a pointer using the dereference
operator *

◦ *x is the same as x[0]

◦ *(x+5) is the same as x[5]

� Code Example

Returning pointers

� We might want to make a function that
returns an array

� Will this work?
long* myfunc() {

 long x[5];

 return x;

}

� No!

More about memory

� Stack and heap are both allocated in
memory but grow from different ends

Stack frames (function calls)

� You can pass a stack allocated array to
another function as a pointer

� But you cannot return a stack allocated
array from a function because the stack
frame is destroyed on return

Returning pointers cont.

� If we want to return a pointer it must not
point to invalid memory such as a deleted
stack frame.

� When a function returns it deletes all its
local variables, including arrays.

� There are two modes of memory allocation
in C:
◦ Stack
◦ Heap

� Allocation on the heap allows a function to
share variables and arrays even after that
function returns.

Passing pointers correctly

� Will this work?
void myfunc2(long* y) {

 y[2] = 0;

 return;

}

int main() {

 long x[5];

 myfunc2(x);

 printf(“%d”, x[2]);

 return 0;

}

Allocation on the heap

� Use malloc(int) to allocate memory
on the heap

� malloc returns a void* pointer (no
type information, just a block of memory)

� Up to you to set a type for the array and
use it

� Always free(void*) after you are
finished with the memory or you will run
out!

� Code Example

More on Strings

� C has a lot of string manipulation
functions, e.g.
◦ strcpy(char* dest, char* src)

◦ strcat(char* dest, char* src)

◦ strcmp(char* str1, char* str2)

◦ strlen(char* s)

� You can also work with strings using
pointer arithmetic

� Code Example

Working with files

� We’ll discuss files at length when we get
to processes

� FILE* is a file stream pointer, just think of
it as a handle to a file

� fopen(char* filename, char* mode)

� fgets(char* buffer, int maxread, FILE* file)

� fprintf(FILE* file, char* formatstr, …)

� fclose(FILE* file)

� Code Example

