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Lecture 2: Memory, arrays and pointers
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Variable scope

e Variables defined inside functions

can’t be used by other functions
int main() {
int x = 2;
/* can only use x here */

¥

e Variables defined outside functions
can be used by any function

int x = 2;
/* X can be used in any function */
int main() {

¥



Arrays

* Recall that arrays are a sequence of
variables next to each other in memory.

* We can define an array of |10 integers like
this:
int x[10];

* What is the variable type of x in this case!?
1. Is it an int?
2. Is it an array?
3. Something else?



Arrays continued

* It’s actually an integer pointer. int*

* Pointers are variables that point to memory locations

01234 5673829

* We can follow a pointer using the dereference
operator *

o *x is the same as x[0]
o *¥(x+5) is the same as x[5]

e Code Example



Returning pointers

* We might want to make a function that
returns an array

e Will this work!?

long* myfunc() {
long x[5];
return X;

* No!



More about memory

 Stack and heap are both allocated in
memory but grow from different ends
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Stack frames (function calls)

* You can pass a stack allocated array to

another function as a pointer

e But you cannot return a stack allocated
array from a function because the stack

frame is destroyed on return
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Returning pointers cont.

* |f we want to return a pointer it must not
point to invalid memory such as a deleted
stack frame.

* When a function returns it deletes all its
local variables, including arrays.

e There are two modes of memory allocation
in C:

> Stack
> Heap
» Allocation on the heap allows a function to

share variables and arrays even after that
function returns.



Passing pointers correctly

* Will this work?
void myfunc2(long* y) {

y[2] = ©;
return;

}

int main() A
long x[5];
myfunc2(x);
printf(“%d”, x[2]);
return 0;



Allocation on the heap

» Use malloc(int) to allocate memory
on the heap

e malloc returns a void* pointer (no
type information, just a block of memory)

* Up to you to set a type for the array and
use it

» Always free(void*) after you are
finished with the memory or you will run
out!

e Code Example



More on Strings

e C has a lot of string manipulation

functions, e.g.

o strcpy(char*
o strcat(char*
o strcmp(char*
o strlen(char*
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* You can also work with strings using
pointer arithmetic

» Code Example



Working with files

o We'll discuss files at length when we get
to processes

 FILE* is a file stream pointer, just think of

it as a handle to a file

fopen(char* filename, char* mode)
fgets(char* buffer, int maxread, FILE* file)
fprintf(FILE* file, char* formatstr, ..)
fclose(FILE* file)

» Code Example



