Richard’s C Programming
Course

Lecture 2: Memory, arrays and pointers

Tips welcome in XRP:
richard43NZXStHcj)i2UBSLGDQGFLKNSs



Variable scope

e Variables defined inside functions

can’t be used by other functions
int main() {
int x = 2;
/* can only use x here */

¥

e Variables defined outside functions
can be used by any function

int x = 2;
/* X can be used in any function */
int main() {

¥



Arrays

* Recall that arrays are a sequence of
variables next to each other in memory.

* We can define an array of |10 integers like
this:
int x[10];

* What is the variable type of x in this case!?
1. Is it an int?
2. Is it an array?
3. Something else?



Arrays continued

* It’s actually an integer pointer. int*

* Pointers are variables that point to memory locations

01234 5673829

* We can follow a pointer using the dereference
operator *

o *x is the same as x[0]
o *¥(x+5) is the same as x[5]

e Code Example



Returning pointers

* We might want to make a function that
returns an array

e Will this work!?

long* myfunc() {
long x[5];
return X;

* No!



More about memory

 Stack and heap are both allocated in
memory but grow from different ends

high address } command-line arguments

and environment variables

initialized to
zero by exec

uninitialized data
(bss)

initialized data

read from
program file
text by exec

low address




Stack frames (function calls)

* You can pass a stack allocated array to

another function as a pointer

e But you cannot return a stack allocated
array from a function because the stack

frame is destroyed on return

Eigher
memory
Frame Frame Frame Frame Frame Frame
for —gp fOX for for for for
main () main() main () main() main () main()

Frame Frame Frame Frame

for for for af() for a()

al) al
Lower Frame Frame reten from
memory for for c() a()

b ': J
mam() retumm from retum from
calls a) b0

b0

a() calls

a() calls ¢




Returning pointers cont.

* |f we want to return a pointer it must not
point to invalid memory such as a deleted
stack frame.

* When a function returns it deletes all its
local variables, including arrays.

e There are two modes of memory allocation
in C:

> Stack
> Heap
» Allocation on the heap allows a function to

share variables and arrays even after that
function returns.



Passing pointers correctly

* Will this work?
void myfunc2(long* y) {

y[2] = ©;
return;

}

int main() A
long x[5];
myfunc2(x);
printf(“%d”, x[2]);
return 0;



Allocation on the heap

» Use malloc(int) to allocate memory
on the heap

e malloc returns a void* pointer (no
type information, just a block of memory)

* Up to you to set a type for the array and
use it

» Always free(void*) after you are
finished with the memory or you will run
out!

e Code Example



More on Strings

e C has a lot of string manipulation

functions, e.g.

o strcpy(char*
o strcat(char*
o strcmp(char*
o strlen(char*

dest,
dest,
strl,

S)

C
C
C

har* src)
har* src)

har* str2)

* You can also work with strings using
pointer arithmetic

» Code Example



Working with files

o We'll discuss files at length when we get
to processes

 FILE* is a file stream pointer, just think of

it as a handle to a file

fopen(char* filename, char* mode)
fgets(char* buffer, int maxread, FILE* file)
fprintf(FILE* file, char* formatstr, ..)
fclose(FILE* file)

» Code Example



