
Richard’s C Programming
Course
September—December 2017

Tips welcome in XRP:
richard43NZXStHcjJi2UB8LGDQGFLKNs

Overview of Course

You will learn the basics of:

� C programming

� Bash and UNIX systems

� Computational theory

� Basic Data structures and algorithms

� Threading

� Processes

� Networking

Course Details

� Recommended Text:
◦ “The C Programming Language” second ed. by K&R

� Five (5) assignments
� Course discussion including during streaming
◦ https://discord.gg/aTDJSkG

� Course thread:
◦ https://www.sythe.org/threads/richards-c-programming-

course-follow-along/

� Course youtube:
◦ https://www.youtube.com/channel/UCqK2GLaI0VTZnK0S

uJBTbzw

� Price: free, but XRP tips appreciated!
◦ richard43NZXStHcjJi2UB8LGDQGFLKNs

Lectures & Assignments

� One lecture per week
◦ Half slides, half coding

� Check your timezone:
◦ 11am Monday GMT+12 (my time)

◦ 6pm Sunday GMT-5

◦ 3pm Sunday GMT-8

◦ 11pm GMT-0

� One assignment every 2-3 weeks
◦ Don’t worry they’ll be fun!

Who is Richard?

Richard Holland

� Degrees:
◦ University of Queensland

◦ B.IT (Software Design)

◦ B.Sc (Physics)

� Commercial programmer for 13 years
◦ Consulting

◦ Manage programming related businesses
� E.g. https://toastwallet.com

Coding Environment

� For this course we will be compiling
programs using the GNU Compiler
Collection

� Everything you see will be done under the
following setup

� You need to download and install Virtual Box
and Ubuntu desktop

� You need to create a new VM with Ubuntu
� Instructions on the thread:
◦ https://www.sythe.org/threads/richards-c-

programming-course-follow-along/

C Basics

� C programs are text files

◦ You can write them with any text editor

◦ We will use nano, and later vi

� C programs are compiled through three
major steps:

◦ The preprocessor

◦ The compiler

◦ The linker

C Syntax

� C programs are built of functions and always start at
a function named main:

int main(int argc, char** argv) {

 return 0;

 /* Some comment */

}

� { } Curly braces denote a sequence of statements to
be executed

� () Parentheses denote an argument list
� ; Semi colon is used to end a statement
� /* anything inside these characters is a comment */

C Syntax continued

� The preprocessor takes directives starting
with a hash character e.g.

◦ #include <stdio.h>

◦ #define PI 3.1415926

� These are not actually C code, but rather
tell the preprocessor how to amalgamate
the code you’ve written before passing to
the compiler

You only learn by doing, so
let’s write some code!

Variables

� Should be defined at the top of your
function

� Look like this:

◦ char x;

◦ double myvar = 2.0;

� You should initialize them

◦ using the assignment operator =

� If you do not they will contain

random data

Variable types

� Integer types:
◦ int

◦ long

� Floating point types (i.e. decimals)
◦ float

◦ double

� Character type
◦ char (treated as a one byte integer)

� Null type
◦ void

Arrays

� Variables sit in memory

� An array is a number of variables next to
each other in memory

� This code creates an array of 10 integers

 int x[10];

� We can access them like normal variables
using the square brace notation:
 x[5] = 1;

� Arrays are zero indexed

Strings

� In C, strings or text is represented as an array of
characters with an extra ‘null character’ at the
end:
 char str[6] = “hello”;

� In memory this looks like:

� Each box in the array contains a character, which
is actually a single byte integer 0-255

� The ASCII standard maps numbers to characters
for display

Conditionals

� If statement
if (i > 5) {

 printf(“greater\n”);

} else {

 printf(“not greater\n”);

}

� Switch statement
switch(i) {

 case 1:

 printf(“i is one\n”);

 break;

 case 2:
 printf(“i is two\n”);

 break;

 default:

 printf(“i is neither one nor two\n”);

}

Loops

� While Loop
while (i > 5)

 printf(“greater\n”);

 i = i – 1;

}

� For loop
for (i = 10; i > 5; i = i – 1) {

 printf(“greater\n”);

}

� Do while loop
do {

 printf(“greater\n”);

 i = i – 1;

} while (i > 5);

Function calls

� Call a function by using the name of the
function and passing arguments to it in
parens:
◦ printf(“testing\n”);

� Everything in C is pass-by-value
◦ (more on this later)

� Ask yourself what this program does:
int main() {
 return main();

}

Basic input and output functions

� Printing to the screen (i.e. stdout):

◦ printf(“%d”, myint);

� Reading from the keyboard (i.e. stdin)

◦ scanf(“%d”, &myint);

� More on how this & operator works later,
when we do pointers

Let’s do an example

