Richard’s C Programming

Course
September—December 2017

Tips welcome in XRP:
richard43NZXStHcj)i2UBSLGDQGFLKNSs

Overview of Course

You will learn the basics of:

e C programming

e Bash and UNIX systems

» Computational theory

» Basic Data structures and algorithms
e Threading

* Processes

* Networking

Course Details

e Recommended Text:
> “The C Programming Language” second ed. by K&R
* Five (5) assighments
» Course discussion including during streaming
o https://discord.gg/aTDJSkG
e Course thread:

o https://www.sythe.org/threads/richards-c-programming-
course-follow-along/

e Course youtube:

o https://www.youtube.com/channel/lUCqK2GLalOVTZnKO0S
u|BTbzw

* Price: free, but XRP tips appreciated!
° richard43NZXStHcj)i2UBSLGDQGFLKNs

Lectures & Assignments

* One lecture per week
o Half slides, half coding

e Check your timezone:
o | lam Monday GMT+12 (my time)
c 6pm Sunday GMT-5
o 3pm Sunday GMT-8
o | Ipm GMT-0

e One assignment every 2-3 weeks
> Don’t worry they’ll be fun!

Who is Richard!?

Richard Holland

* Degrees:
> University of Queensland
> B.IT (Software Design)
> B.Sc (Physics)

o Commercial programmer for |3 years
> Consulting

> Manage programming related businesses
E.g. https://toastwallet.com

Coding Environment

 For this course we will be compiling
programs using the GNU Compiler
Collection

e Everything you see will be done under the
following setup

* You need to download and install Virtual Box
and Ubuntu desktop

e You need to create a nhew VM with Ubuntu

e |nstructions on the thread:

o https://www.sythe.org/threads/richards-c-
programming-course-follow-along/

C Basics

o C programs are text files
°> You can write them with any text editor

> We will use nano, and later vi

» C programs are compiled through three
major steps:

> The preprocessor

> The compiler

> The linker

C Syntax

e C programs are built of functions and always start at
a function named main:

int (int argc, char** argv) {
return 0;
/* Some comment */

¥

e {} Curly braces denote a sequence of statements to
be executed

* () Parentheses denote an argument list
* ; Semi colon is used to end a statement
 [* anything inside these characters is a comment */

C Syntax continued

* The preprocessor takes directives starting
with a hash character e.g.

o #include <stdio.h>
o #define Pl 3.1415926

* These are not actually C code, but rather
tell the preprocessor how to amalgamate
the code you’ve written before passing to
the compiler

You only learn by doing, so
let’s write some code!

Variables

 Should be defined at the top of your
function
* Look like this:
o char x;
o double 2.90;
* You should 1initialize them
> using the assignment operator =

e If you do not they will contain
random data

Variable types

* Integer types:
c int
o long
 Floating point types (i.e. decimals)
> float
> double

e Character type
o char (treated as a one byte integer)

* Null type

o void

Arrays

 Variables sit in memory

e An array is a number of variables next to
each other in memory

* This code creates an array of |10 integers
int x[10];
* We can access them like normal variables
using the square brace notation:

X[5] = 1;
* Arrays are zero indexed

Strings

* In C, strings or text is represented as an array of
characters with an extra ‘null character’ at the
end:

char str[6] = “hello”;

e In memory this looks like:

hle[1]1]o\e

e Each box in the array contains a character, which
is actually a single byte integer 0-255

e The ASCII standard maps numbers to characters
for display

Conditionals

e If statement

if (i > 5) {
printf(“greater\n”);
} else {

printf(“not greater\n”);

}

e Switch statement
switch(i) {

case 1:
printf(“i is one\n”);
break;

case 2:
printf(“i is two\n”);
break;

default:

printf(“i is neither one nor two\n”);

Loops
e While Loop

while (i > 5)
printf(“greater\n”);
i=1-1;

}

* For loop

for (1 =10; 1 > 5; i =1 -1) {
printf(“greater\n”);

}

* Do while loop

do {
printf(“greater\n”);
i=1-1;

} while (i > 5);

Function calls

 Call a function by using the name of the
function and passing arguments to it in
parens:

0 (“testing\n”);

e Everything in C is pass-by-value
° (more on this later)

* Ask yourself what this program does:

int main() A
return main();
}

Basic input and output functions

* Printing to the screen (i.e. stdout):
o printf(“%d”, myint);

* Reading from the keyboard (i.e. stdin)
o scanf(“%d”, &myint);

* More on how this & operator works later,
when we do pointers

Let’s do an example

